..
SM2_verify 参数中的数据类型转换
SM2_verify 的函数原型
int SM2_verify(int type, const unsigned char *dgst, int dgstlen,
const unsigned char *sig, int siglen, EC_KEY *ec_key);
其中 dgst
和 sig
是 const unsigned char*
类型。
而工作中的代码使用的C++。
digest
的数据类型是 vector<unsigned char>
需要进行格式转换。
const unsigned char *dgst = reinterpret_cast<const unsigned char*>(digest.data());
扩展 reinterpret_cast3 4
static_cast is the first cast you should attempt to use. It does things like implicit conversions between types (such as int to float, or pointer to void*), and it can also call explicit conversion functions (or implicit ones). In many cases, explicitly stating static_cast isn't necessary, but it's important to note that the T(something) syntax is equivalent to (T)something and should be avoided (more on that later). A T(something, something_else) is safe, however, and guaranteed to call the constructor.
static_cast can also cast through inheritance hierarchies. It is unnecessary when casting upwards (towards a base class), but when casting downwards it can be used as long as it doesn't cast through virtual inheritance. It does not do checking, however, and it is undefined behavior to static_cast down a hierarchy to a type that isn't actually the type of the object.
const_cast can be used to remove or add const to a variable; no other C++ cast is capable of removing it (not even reinterpret_cast). It is important to note that modifying a formerly const value is only undefined if the original variable is const; if you use it to take the const off a reference to something that wasn't declared with const, it is safe. This can be useful when overloading member functions based on const, for instance. It can also be used to add const to an object, such as to call a member function overload.
const_cast also works similarly on volatile, though that's less common.
dynamic_cast is exclusively used for handling polymorphism. You can cast a pointer or reference to any polymorphic type to any other class type (a polymorphic type has at least one virtual function, declared or inherited). You can use it for more than just casting downwards – you can cast sideways or even up another chain. The dynamic_cast will seek out the desired object and return it if possible. If it can't, it will return nullptr in the case of a pointer, or throw std::bad_cast in the case of a reference.
dynamic_cast has some limitations, though. It doesn't work if there are multiple objects of the same type in the inheritance hierarchy (the so-called 'dreaded diamond') and you aren't using virtual inheritance. It also can only go through public inheritance - it will always fail to travel through protected or private inheritance. This is rarely an issue, however, as such forms of inheritance are rare.
reinterpret_cast is the most dangerous cast, and should be used very sparingly. It turns one type directly into another — such as casting the value from one pointer to another, or storing a pointer in an int, or all sorts of other nasty things. Largely, the only guarantee you get with reinterpret_cast is that normally if you cast the result back to the original type, you will get the exact same value (but not if the intermediate type is smaller than the original type). There are a number of conversions that reinterpret_cast cannot do, too. It's used primarily for particularly weird conversions and bit manipulations, like turning a raw data stream into actual data, or storing data in the low bits of a pointer to aligned data.
-
If the vector object is const-qualified, the function returns a pointer to const value_type. Otherwise, it returns a pointer to value_type. ↩